
3 Fermi National Accelerator Laboratory 

FERMILAB-Conf-95/2 13-T 
July 15, 1995 

MILXY WAY: How MUCH BETTER THAN VEGAS 
CAN ONE INTEGRATE IN MANY DIMENSIONS?’ 

C.I.Manankova’, A.F.Tatarchenko” and F.V.Tkachov”’ 

i Center of Technical Lasers of Russ. Acad. Sci., Troitsk 142092, RUSSIA 
ii Institute of High Pressure Physics of Russ. Acad. Sci., Troitsk 142092, RUSSIA . . . 

” FNAL, P.O.Box 500, Batavia, IL 60510, USA and 
Institute for Nuclear Research of Russ. Acad. Sci., Moscow 117312, RUSSlAb 

Abstract MILX is an implementation of a universal adaptive algorithm of integration in many 
dimensions based on a systematic use of simplicial decompositions of integration domain and ele- 
ments of AI to handle geometric structures and adaptation strategy. For a non-trivial class of inte- 

r grands, it yields similar or better precision than Lepage’s VEGAS. MILX surpasses VEGAS in 
flexibility, and smoothly handles diagonal structures that are a stumbling block for VEGAS. It of- 
fers a wide range of options for optimizations for conrete classes of integrands. We discuss imple- 
mentation, directions of further development, fine-tuning options, and possible applications of the 
algorithms of the ‘MILXy Way’ family. 

a A contribution to AINHEP-95 (Ph. Italy, April 1995). extended version. 
b Permanent address. 



1. Introduction 

The multidimensional integrals (Feynman diagrams) play the same role in high-energy physics as differen- 
tial equations do in classical mechanics. The importance of the problem of numerical multidimensional inte- 
gration (NMI) can therefore not be overstated. A good review of NM1 can be found in Ref. 1, and below we 
consider for comparison only Lepage’s VEGAS 2 which seems to be the best program of its kind. 

It is hard to imagine how VEGAS, which is just -250 FORTRAN lines long, could possibly be beaten on 
the basis of quality-of-results-and-universality per line-of-code. However, VEGAS cannot satisfactorily 
handle diagonal structures (e.g. an integrand localized along the main diagonal of the hypercube, [O,. . .,O]- 
[l ,...,l]). This is because it relies on a fixed coordinate system to slice the hypercubic integration domain 
by subdividing the coordinate axes. No satisfactory way to circumvent this difficulty within the framework 
of VEGAS has been found. VEGAS handles all the other (statistical and adaptive) aspects of Monte Carlo 
integration with a stunning economy, so that its geometric rigidity seems to be its only weakness. 

We would like to report the results of the first, pilot stage of our MILX’ project that aims to explore an 
adaptive NM1 scheme based on simplicial (rather than hypercubic) decompositions of the integration do- 
main. 

The simplicial decompositions are the most universal and flexible tool to describe the structure of multi- 
dimensional geometric objects (manifolds etc.; see any textbook on algebraic topology). They are also well- 
known in numerical mathematics (e.g. the method of finite elements). However, their sufficiently flexible 
program implementation requires advanced programming techniques to handle complex data structures - 
the techniques that is better known in the context of AI research than numerical mathematics. In this respect 
it should be pointed out that writing a general integration routine based on simplicial decompositions was 
attempted in Ref.3 which used an exotic non-portable programming language. Apparently, the latter fact 
together with the success of VEGAS that was made public at about the same time, eclipsed the results of 
Ref.3.” However, the development of new progmmming methodologies in recent years (the object-oriented 
programming paradigm implemented in the highly portable C++) together with a proliferation of applied 
problems that involve NMI, allow one to reconsider the issue from an entirely different perspective and in a 
much more practical context. 

2. Description 

2.1. The philosophy of MILX 
Adaptability is an overriding consideration in higher dimensions. 

G.P.Lepage, VEGAS ’ 
Experience shows that some form of adaptive Monte Carlo (MC) integration is an essential ingredient of 
any successful NM1 program. This is because in many cases an appropriate subdivision of integration de 
main allows one to drastically reduce variance of the pure MC integration.’ The crux of the matter is how 
well a program can perform such a subdivision. The latter depends, first, on how well the geomeuy of the 
integrand can be reflected in the resulting subdivision with a concrete subdivision technique, and second, on 
how well a particular subdivision strategy exploits available information about the integrand. The two 

’ The characters in MILX stand for Multidimensional Integration / List / simplex. “MlLXy way” seems an appropriate descrig 
tion of the underlying philosophy because MILX should best be thought of as a flexible environment rather than a single pry 
&Tram - an environment that is capable of accomodating a vast range of adaptation strategies optimized for particular applied 
NM1 problems. 
d It is reviewed in Ref. 1 and we became aware of Ref. 3 only while preparing this report which may be as well because other- 
wise the decision to undertake the MILX project would have been more difficult. It is inevitable that there should be certain 
parallels between MILX and Ref. 3. and our results corroborate the optimistic conclusions of Ref. 1 concerning the potential of 
simpliciai decompositions for NMI. In this respect we would like to emphasize that there are few new major technical elements 
in MILX. What is new though is an attempt to implement those elements in a practical twi. 



3 

apsects of adaptation strategy in NM1 can be conveniently referred to as the “geometric” aspect and the 
“artificial intelligence” aspect. 

On the other hand, there are many different applied problems with vastly different requirements, and be- 
cause NM1 is notoriously difficult one would like to make full use of any information on the integrand that 
may be available. This means that each problem has its own optimal subdivision strategy depending on 
whether the integrand is smooth or not; on the form of the integration domain; on the position and type of 
singularities/spikes etc. Then it is hardly possible to have one program to satisfy every need. A better ap 
preach is to have a program package that could be optimized for each particular problem - or to serve as a 
toolbox to be used when implementing a specific subdivision strategy. 

2.1.1. Geometric aspect 

VEGAS along with many other earlier programs uses hypercubic decompositions, so that the initial inte- 
gration domain and all the subdomains are d-dimensional hypercubes. This requires fixing a coordinate 
system, and changing the latter proves to be unfeasible. On the other hand, algebraic topology (see any text- 
book) systematically uses simplices as simplest and extremely flexible building blocks from which to con- 
struct arbitrarily complex manifolds. An oriented d-dimensional simplex S =[vO,...*vd] in a D- 
dimensional space is a convex hull of d + 1 D-dimensional vectors Vi , i = O,l,. . . ,d . The order of the vectors 
fixes the orientation of the simplex. In general, d I D. A O-dimensional simplex is a point; a l-dimensional 
simplex is a segment of straight line between two points; a 2-dimensional simplex is a triangle spanned by 
its three vertices; a 3dimensional simplex is a tetrahedron spanned by its four vertices; etc. The numbers 
xi , i = 0,. . . ,d, ~~!~ xi = 1, are local coordinates of a point v in S if v = Z& XiVi. (The USU~ Cartesian 
coordinates of v are its global coordinates.) If all Xi > 0 then one deals with an internal point of the sim- 

*plex. If for some i Xi = 0 then the point belongs to the boundary of S. For d = D the volume of the simplex 
is defined in a standard way. If the orientation of the vectors Vi -vu coincides with that of the global coor- 
dinate axes than the volume is positive by definition; otherwise it is negative. Note that the boundary of a d- 
dimensional simplex consists of (d - I)-dimensional simplices, etc. It is clear that one can approximate a 
domain of arbitrary shape using simplices, and that any simplicial decomposition can be refined as far as 
needed in many ways. This gives one ultimate geometrical flexibility but the program implementation may 
be extremely cumbersome if not done with greatest care. 

In the context of MILX, we use the term “simplexon” to refer to a correct simplicial decomposition of an 
integraion domain. 2.1.1 

2.1.2. Iterative construction of a simplexon 

In the simplest case the initial integration domain consists of one D-simplex. An adaptation program ex- 
plores the integrand and decomposes the initial simplex into a sum of a larger number of simplices using a 
number of simple basic operations. Which operations to apply depends on the strategy adopted (see below). 
The number of possible basic operations is rather large: 

One such basic operation consists in splitting a D-simplex into D + 1 D-simplices with a new vertex in- 
side the simplex. A crucial point here is that one does not need to recompute the volumes of the new sim- 
plices because they are just fractions of the initial volume determined by the local coordinates of the new 
vertex. One can take any two vertices of a simplex and split the corresponding segment in two. This induces 
a split in two of all D-simplices that have the same segment as part of their boundary, and the volumes are 
split proportionately. One can similarly split any d-dimensional boundary simplex inducing splits of all ad- 
jacent D-simplices. The resulting simplices inherit the orientation of the initial one. 

An important operation is a move of a vertex. Then the volumes of the adjacent simplices change accord- 
ingly. It may happen that the vertex moves too far so that there emerge simplices with negative volumes 
which means that some simplices overlap. This, however, proves to be of little import because the MC inte- 



4 

gration with infinite number of points would give a correct result if contributions of all simplices take into 
account their orientation. On the other hand, a multiple count of the same subdomain due to the overlap en- 
hances the total variance and is, therefore, automatically avoided by any reasonable subdivision strategy. 

An important class of operations ensures a possibility of nontrivial restructuring of the simplicial decom- 
position. For instance, merge any two adjacent vertices into one. Then all simplices that had both vertices in 
their boundary are eliminated. This can be generalized to more than two vertices. On the other hand, one 
can take any vertex, consider the body consisting of all its adjacent D-simplices, eliminate the vertex and 
rebuild the volume into a lesser number of simplices. Such rebuilds allow the adaptation algorithm explore, 
in principle, all possible simplicial decompositions of a given domain. 

2.1.3. Analytical criteria 

The purpose of any decomposition of integration domain is to reduce the variance of MC integration. This 
is the ultimate goal, and the only criterion of optimization. We emphasize this point because one may worry 
about ungainly geometry of the resulting simplexon (e.g. many “splinters” i.e. narrow long or almost flat 
simplices) and thus get ensnarled in unnecessary complications. The optimal simplexons often look counter- 
intuitive especially when higher-order analytic quadratures are employed. 

In general, a concrete class of problems determines the strategy of constructing an optimal simplexon. 
The minimal analytical information one uses is the current estimate of the variance for each simplex. We 
find analytic quadratures a powerful tool for NMI, so it is natural to use an interpolation formula as a zero- 
approximation and correct it by computing via MC the integral of the difference between the exact inte- 
grand and its interpolation. Then the variance measures the error of MC integration of that difference. A 
program can choose an interpolation method that yields a minimal variance (e.g. no interpolation; linear or 
quadratic interpolation etc.). The error estimates being a very difficult and importane element of NMI, it is 
crucial that many ways to estimate errors were available e.g. based on Runge-Eitken process etce 

Furthermore, it may be useful to have an information on how quickly the integrand or variance varies 
around some vertex (e.g. for deciding whether and where to move it). In some special cases one may wish to 
estimate variance of the integrand for all D + 1 faces of a simplex and choose an operation accordingly. 

2.1.4. Strategy and tactics 

The specifics of the problem determine the global strategy of constructing an optimal simplexon. In general, 
the strategy consists of a few stages (that can be referred to as e.g. debute, mittelspiel, endspiel etc.) that 
involve different priorities and criteria for operations used to modify the simplexon. It is convenient to use 
the term tactics to refer to the concrete criteria for choosing and performing an operation. Thus, the debute 
stage may give priority to splits of simplices while neither moves of vertices nor rebuilds are attempted. 
Also, if there is a priori information on the position of a spike then the latter should be isolated within a 
simplex as early as possible using special techniques. The same principle applies if one knows that the inte- 
grand has (integrable) singularities near the boundaries of the integration domain. 

On the other hand, the endspiel stage of the simplexon construction is characterized by lack of resources 
(e.g. insufficient memory to increase the number of simplices) and therefore should focus on fine-tuning 
positions of vertices and rebuilds. 

An important strategic component of any complex construction problem is an option to backup if the 
construction process fails to result in much progress after several iterations. This can be achieved either as a 
simple backup (e.g. by restoring a previous version of simplexon saved earlier) or via more complex opera- 
tions (such as rebuilds and eliminations of vertices described above) that could radically redirect the con- 
struction process. 

’ It should be emphasized that such tricks are allowed only to estimate errors of analytic quadratures for an individual simplex. 
The error for the entire integral is of a statistical nature and must be handled accordingly. 



5 

Quite obviously, the number of options is enormous, and an optimal choice (as our experience shows) 
can rarely be found by random experimentation. The challenge here is to formulate general “philosophic” 
principles of construction for each step depending on the a priori information about the integrand and a very 
clear understanding of the objectives, then to reduce those principles to an unambiguous heuristic, and fi- 
nally to translate that heuristic into concrete formulas and prescriptions in a simple and direct way. Neither 
proves to be an easy task. 

2.1.5. Programming techniques 
. 

It is clear that both to handle the complex geometric operations involved in the construction of an optimal 
simplexon, and to allow a sophisticated and flexible investigation of the integrand to determine an optimal 
operation at each iteration, one needs rather complex dynamic data structures. One has to deal with several 
types of lists (to describe vertices with their global and local coordinates, simplices, cross-pointers to ensure 
fast search of, e.g., simplices adjacent to a given vertex, as well as all sorts of intermediate data, e.g. a tem- 
porary list of simplices that are to be affected by a rebuild, etc.). If one aims at a practical portable NM1 
system designed along the lines described above then the only viable choice seems to use the C/C++ pro 
gramming language. The entire program package should then consist of several program layers: 
l The lowest (technical) layer handles memory allocation and the list structures without regard to their 

meaning. 
l Another (geometric) layer interpretes the geometrical information and performs various operations on the 

simplexon. 
l Yet another (“AI”) layer deals with strategy and tactics using analytical information and implements the 

“artificial intelligence” of the algorithm. 
l Finally, the topmost layer ensures an interface with the user program (or with the user if the construction 

is interactive). 
Depending on the user’s expertise the user may wish to work at a particular level. This emphasized the dif- 
ficulty of the overall design of MILX-type algorithms: they are to provide more than one user interface of 
varying complexity in a coherent manner. 

2.2. Aims of the project 
We report here the results of the first, exploratory stage of the MILX project. A natural breakpoint occured 
when - after much experimentation with a working model and its comparison with VEGAS - we became 
fully aware of the strength and weaknesses of both VEGAS and MILX, and a sufficient understanding was 
gained to allow us to begin a systematic work on a version oriented towards real-life applications. Our most 
important conclusion of a general character is that MILX-type algorithms are at their best when there is 
some a priori information that allows one to fine-tune the algorithms for a concrete application. Therefore, 
further progress can be best ensured in the context of a specific applied problem, and we hope to provide 
here some information to help one to see whether a MU&type program may suit one’s needs. 

Although a fairly general version of the algorithm is possible, both the spirit of MILX and our experience 
indicate that one should aim at developing a toolbox-type library of routines that would allow one to put 
together a customized algorithm for a specific application, together with a library of ready solutions 
(“strategies”) optimized for some typical problems. 

The complexity of such a package requires a considerable effort to provide its complete self-contained 
description, and with the limited resources at our disposal that should not be expected to happen very soon. 
Even when such a description is available publicly, a successful customization for a non-standard problem 
would typically require a considerable experience with, and understanding the properties of, the MILX-type 
algorithms - especially because they sometimes tend to exhibit rather unpredictable reactions to seemingly 
minor changes in their control parameters. This, of course, makes them great fun to play with and points to 
hidden resources of optimization - but magic solutions should not be expected. 



6 

The working model of MILX described below was implemented using Turbo C version 2.0 on a 486/33 
PC within the usual 640K PC memory limitation which proved sufficient for dealing with non-trivial ex- 
amples in D = 5. 

2.3. Data structures 
The key elements of the data structure describing the simplexon are a list of all vertices and a list of all 
simplices. The concrete organization is chosen based on considerations of simplicity, flexibility of program 
maintenance and on how often a particular operation is performed (e.g. a search of all simplices adjacent to 
a given vertex or a search of the 10% of simplices with the largest variance, etc.). 

A vertex is, essentially, a list of its global coordinates together with some analytical information (the 
value of the integrand at the vertex as well as some sort of variance-like parameter to describe the quality of 
simplexon construction around it; for simplicity we call this parameter variance of vertex). Each vertex is 
assigned a unique label when it is created. The multiply connected list of vertices is ordered lexicographi- 
tally with respect to their labels, and there is a separate ordering with respect to their variances which is 
always maintained. 

A simplex is an array of (labels of, and pointers to) vertices ordered lexicographicahy with respect to 
their labels (since the latter may not coincide with the orientation of the simplex a sign is also stored to cor- 
rect for that) plus some analytical information (the current estimates of the integral and the variance for the 
simplex together with the number of integrand calls used for that, as well as the interpolation method that 
yields best results: the integral and variance are estimated relative to that interpolation as explained above). 
The multiply connected list of all simplices has several orderings: one is lexicographic with respect to their 
“names” (i.e. the arrays of their vertices); another is with respect to their variances. 

The list of vertices is never large even in high dimensions because the number of simplices is much 
larger, and it is the resources taken up by the latter that determine the memory requirements. 

The fact that various searches (e.g. during investigation prior to choosing an operation on simplexon) are 
performed rather often, explains that the necessary orderings of the two lists are continuously maintained. A 
relatively local nature of operations used to modify the simplexon ensures that only a few objects (vertices 
and simplices) are affected each time, so that full sorts are very seldom needed. 

2.4. Adaptation strategies and tactics 
At the pilot stage of our project we concentrated mostly on two generic forms of integrands. One is a char- 
acteristic function of a subregion within the standard simplex (an ellipsoid with arbitrary foci and radii al- 
lowing a partial overlap with the simplex, and a hypercube with arbitrary sides). This models integration 
over a domain of a complex shape embedded in a simplex (as required by the current version of MILX; note 
that this restriction can be eliminated). The second class of functions we considered is exponent& of the 
form expC,& yf /ai where y are global coordinates and d are arbitrary parameters. 

Note first of all that the simplicial algorithms prove to be supremely insensitive to orientation of the 
dominant integration subregion with respect to the global coordinate axes. Therefore, the problem of 
“diagonal” structures is unknown to MILX. 

In both cases, we find that the debute and mittelspiel stages of the construction of simplexon are charac- 
terized by the predominant usefulness of the various splittings of simplices with a small admixture of re- 
builds (however, we have not yet fully explored the effects of complex rebuild operations which may be 
non-negligible). The tactics that proves to be most useful consists in focusing on the simplices/vertices with 
largest variance and attempting to split them. In accordance with the philosophy of MILX, the actual split is 
performed with a maximal use of available information. First, a guess is made as to the optimal position of 
the new vertex (typically, a convex combination of vertices of the simplex being split with weights equal to 
their variances). Then an MC estimate of variances of the new simplices is made, and the position of the 
vertex is adjusted in the direction of the new simplices with maximal variances. One can perform as many 
adjustements as one wishes but a two-step procedure is satisfactory in a majority of cases. 



7 

The crucial problem with the integrands of the first class is the occurrence of tiny overlaps of the non- 
zero subregion with the seemingly empty surrounding simplices. Such overlaps are the main reason why the 
algorithm may show a “reluctance” to significantly increase precision after certain stage. VEGAS tackles 
this problem using a smearing between adjacent intervales and this trick is also possible in MILX. But 
MILX allows potentially more effective solutions. For instance, a simple and useful heuristic is to place 
vertices in suitable cases at positions were the integrand is zero. This significantly reduces the above over- 
laps but does not eliminate them altogether. One should regard this as a beginning of a new optimization 
stage that requires special tactics. Finding such overlaps is, in principle, straightforward (it is sufficient to 
examine in more detail the “internal” - with respect to the global “external” boundary of the integration 
domain - boundaries of the “empty” simplices) but we did not attempt that with the working model due to 
certain rigidity of the programming implementation of the latter. The new version is expected to allow a 
much better handling of this situtaion. 

In general, the final stages of constmction (prior to the straightforward MC integration at the very end) 
are more sensitive to the properties of the integrand and require more subtle optimization tactics. The latter 
require a flexible systematic organization of the instrumental layer of the program. 

In the second class of integrands their smoothness suggests that emphasis should be shifted to the use of 
analytic quadratures. This indeed proves to be the case to such an extent that for wide smooth structures the 
details of how exactly the splits are done affect the precision of final results little. 

On the whole it appears that with MILX, it is often more advantageous to spend resources on the optimal 
simplexon construction rather than the direct MC integration at the end. Since the simplexon construction is 
performed stochastically as a matter of principle, the error of the final result has a random nature even if 
analytic quadratures are used in all elementary simplices. 

.2.5. Instrumental means 
The most importan tool is a (pseudo-) graphical representation of the distribution of vertices and simplices 
with respect to variances. This allows one to monitor the progress of the algorithm and manually explore 
various operations. This is useful for accumulating experience with the algorithm, and is also a prototype of 
an interactive approach in which a human intervention may ensure a level of non-artificial intelligence unat- 
tainable by programming means. 

A useful tool is a save-to-disk feature that can be used two-fold: First it provides a means of backing up 
of the algorithm if it fails to achieve a significant improvement after a certain number of attempts (or de- 
pending on a temperature-type stochastic criterion). Second, it can be useful in interactive optimization for 
inspection of the intermediate results by a human. 

The working model also offers a graphical representation of the simplexon that is specific for D = 2. 
This proves to be great for demonstrations and adds much fun and fascination to playing with MILX. Un- 
fortunately, the tricks that work in two dimensions will not necessarily be useful in higher-dimensional 
problems. 

2.6. Results 
The three tables below summarize the performance of MILX in comparison with VEGAS for three classes 
of integrands. 

Note that all three examples are of a kind where the absence of diagonal structures gives an advantage to 
VEGAS. With distinct diagonal structures the performance of VEGAS - unlike that of MILX - quickly 
deteriorates. 

The comparison of MILX and VEGAS is made difficult by the different geometry of the global integra- 
tion domains of the two algorithms. Therefore the calculations with VEGAS were performed in two vari- 
ants: the column VEGAS-l shows the results for the integrand obtained by a natural continuous mapping of 
the standard D-dimensional simplex onto the unit hypercube taking into account the Jacobian of the trans- 



8 

formation. VEGAS-2 is for a natural embedding of the simplex into hypercube with the integrand extended 
to the entire hypercube using the same analytical formula. 

All tables present the values of the variance d in 8, and the dimensionality of examples is D = 5. 
The number of integrand evaluations is N = 200K unless indicated otherwise. 
The cases when MILX matches or exceeds VEGAS precision-wise are shown with black frames. 

2.6.1 Integration over a spherical subregion 

In this example the function takes the values 1 and 0 within and outside a sphere of radius R placed at the 
center of the standard simplex. The sphere may extend beyond the simplex but the integration is restricted to 
the latter. 

Table 1. Results for the characteristic function of a sphere. 

R (radius ) MILX VEGAS- 1 VEGAS-2 

0.2 

0.3 

0.4 

0.5 

0.39% 0.34% 

0.17% 0.17% 

0.08% 0.11% 

0.04% 0.085% 

0.91% 
(N=4OOK) 

N/A 

N/A 

N/A 

2.6.2 Integration of a smoothjknction 

In this example we integrate the spherically symmetric exponential 

exp[-(r -x0)*/R*], (2.1) 

where x0 is the center of the standard simplex. Note that for R + 00 the integrand becomes 1 so that the 
MC error is zero and adaptation plays no role. 

Table 2. Results for the spherically symmetric exponential. 

R(radius) 1 MILX VEGAS- 1 VEGAS-2 

0.1 0.390% 0.160% 0.140% 

0.2 0.120% 0.096% 0.093% 

0.3 0.057% 0.093% 0.088% 

0.4 0.031% 0.076% 0.046% 

0.5 0.020% 0.075% 0.027% 

2.6.3 Singularity at the boundary 

The integrand here has the form 

(2.2) 



9 

The results are shown in Table 3. Note that, again, the position of singularity is chosen such that it is very 
easy for VEGAS to isolate it especially for larger M. 

Table 3. Example with a singularity at the boundary 

M MILX VEGAS- 1 VEGAS-2 

5 0.017% 0.064% 0.017% 

4 0.050% 0.07% 0.017% 

3 0.061% 0.075% 0.027% 

2 0.14% 0.09% 0.053% 

1 0.2% 0.085% 0.054% 

3. Discussion 

The results presented above were obtained using a working model of MILX. We call this version a working 
model because it evolved largely in a trial-and-error fashion and it was impossible to predict which features 
would prove to be important eventually: the algorithm exhibited a rather complex behavior with respect to 
changes of its parameters etc. Also the aims of the project as we now understand it require a much stricter 
programming discipline than we had been prepared for. Nevertheless, even the imperfect working model 
allows one to make a definite conclusion about feasibility of this approach. Our target in a near perspective 
is to produce a ftmctionahy complete basic MILX package. In particular, we hope to implement optimized 
‘;‘tactics” for integrands containing delta-peaks, for highly smooth integrands, for integrands with integrable 
power singularities at the boundaries of the simplex (of the sort encountered in the theory of Feynman dia- 
grams). 

Since MILX is intended to be a customizable library rather than a universal routine, each applied prob- 
lem should be approached concretely, and a useful program product may emerge only after several such 
problems are dealt with. Therefore we consider it essential to experiment with MILX in the context of con- 
crete real-life projects. 

Success of the project depends, as we realized, on the quality of design and programming implementa- 
tion, in particular, a strict hierarchical implementation of data structures etc. A systematic use of an OOP 
discipline seems to be essential. There might be advantagies having a LISP-like engine for handling the 
complex data structures but this may affect portability and cause problems of interface with routines for 
evaluation of integrand. 

It turns out that the possibility to use analytic quadratures and interpolation formulas is a very powerful 
option in MILX. Only a limited number of mathematical results is available here because, apparently, of the 
hypercubic orientation of a great majority of existing integration routines. It should be fairly straightforward 
to develop, say, Gauss-type formulas for simplices (unlike hypercubes). On the other hand, the powerful 
Korobov-type formulas4 are at their best with periodic integrands, which is not easily compatible with the 
simplicial geometry. 

4. Conclusions 

We emphasize that none of the major technical elements of the MILX project are new. The whole, however, 
appears to be non-trivial enough: the first results indicate that the technique of simplicial decompositions 
offers advantages over the hypetcubic approach in a number of cases and opens a realistic prospect for a 
further progress with numerical muhidimensional integration in a near future - after about 15 years of 
undisputed reign of VEGAS. We believe to have demonstrated both the overall feasibility of the approach, 
and a possibility of its practical C/C++ implementation. 



10 

The applications where the algorithms of the ‘MILXy Way’ family may have a clear advantage over 
conventional algorithms appear to be as follows: 

Applications requiring a high precision unattainable via a pure Monte Carlo. This becomes possible due 
to flexibility of simplicial decompositions plus a natural use of analytic quadratures. In fact, the straight- 
forward MC integration for a fixed decomposition of the integration domain at the very last stage is less 
important in MILX, and the stochastic nature of the error of the final result is due to the stochastic na- 
ture of the construction. 
Applications where an economical and precise description of the geometry of integrand is needed. 
(VEGAS may ‘see’ too many spurious regions with high variance if the integrand contains diagonal 
structures.) 
Applications involving many similar integration problems where one can design a customized optimiza- 
tion strategy to make full use of available a priori information and, perhaps, a precomputed simplicial 
decomposition that only has to be fine-tuned for each specific integrand. 
Applications where each evaluation of the integrand is extremely costly so that a maximal use of the in- 
formation already available is necessary. 
Applications where a considerable a priori information about the integrand is available that can be used 
to optimize the strategy of constructing the decomposition of the integration volume. 

Acknowledgements 

One of us (F.T.) is grateful to M.Fukugita and G.P.Lepage for providing copies of VEGAS and related 
materials which started our project and for stimulating discussions, and to the FERMILAB Theory Group 
where a part of this work was done, for hospitality. P.E.Zhidkov pointed out to us the Korobov formulas. 
We thank the members of the CompHEP project for a discussion of MILX. This work was made possible in 
parts by the Russian Fund for Fundamental Research (grant 95-02-05794) and the International Science 
Foundation (grants MP9000/9300). 

References 

1. F. James, Rep. Prog. Phys, 43 (1980) 1143. 
2. G. P. Lepage, J. Comput. Phys. 27,192 (1978). 
3. D.K. Kahaner and B. Wells, ACM Trans. Math. Software 5 (1979) 86. 
4. N.M. Korohov, Trigonometric sums and their applications, NAUKA, Moscow, 1989. 


